On doubly robust estimation in a semiparametric odds ratio model.

نویسندگان

  • Eric J Tchetgen Tchetgen
  • James M Robins
  • Andrea Rotnitzky
چکیده

We consider the doubly robust estimation of the parameters in a semiparametric conditional odds ratio model. Our estimators are consistent and asymptotically normal in a union model that assumes either of two variation independent baseline functions is correctly modelled but not necessarily both. Furthermore, when either outcome has finite support, our estimators are semiparametric efficient in the union model at the intersection submodel where both nuisance functions models are correct. For general outcomes, we obtain doubly robust estimators that are nearly efficient at the intersection submodel. Our methods are easy to implement as they do not require the use of the alternating conditional expectations algorithm of Chen (2007).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

Cross-Fitting and Fast Remainder Rates for Semiparametric Estimation

There are many interesting and widely used estimators of a functional with finite semiparametric variance bound that depend on nonparametric estimators of nuisance functions. We use cross-fitting (i.e. sample splitting) to construct novel estimators with fast remainder rates. We give cross-fit doubly robust estimators that use separate subsamples to estimate different nuisance functions. We obt...

متن کامل

Wavelet Threshold Estimator of Semiparametric Regression Function with Correlated Errors

Wavelet analysis is one of the useful techniques in mathematics which is used much in statistics science recently. In this paper, in addition to introduce the wavelet transformation, the wavelet threshold estimation of semiparametric regression model with correlated errors with having Gaussian distribution is determined and the convergence ratio of estimator computed. To evaluate the wavelet th...

متن کامل

Doubly Robust Causal Inference With Complex Parameters

Semiparametric doubly robust methods for causal inference help protect against bias due to model misspecification, while also reducing sensitivity to the curse of dimensionality (e.g., when high-dimensional covariate adjustment is necessary). However, doubly robust methods have not yet been developed in numerous important settings. In particular, standard semiparametric theory mostly only consi...

متن کامل

Semiparametric Estimation and Inference Using Doubly Robust Moment Conditions

We study semiparametric two-step estimators which have the same structure as parametric doubly robust estimators in their second step, but retain a fully nonparametric specification in the first step. Such estimators exist in many economic applications, including a wide range of missing data and treatment effect models. We show that these estimators are √ n-consistent and asymptotically normal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biometrika

دوره 97 1  شماره 

صفحات  -

تاریخ انتشار 2010